
emphaSSL: Towards Emphasis as a Mechanism to
Harden Networking Security in Android Apps

Xuetao Wei†, Michael Wolf†, Lei Guo∗, Kyu Hyung Lee‡, Ming-Chun Huang◦, and Nan Niu†
†University of Cincinnati ∗Northeastern University ‡University of Georgia ◦Case Western Reserve University

Abstract—The use of secure HTTP calls is a first and critical
step toward securing the Android application data when the
app interacts with the Internet. However, one of the major
causes for the unencrypted communication is app developer’s
errors or ignorance. Could the paradigm of literally repetitive
and ineffective emphasis shift towards emphasis as a mecha-
nism? This paper introduces emphaSSL, a simple, practical
and readily-deployable way to harden networking security in
Android applications. Our emphaSSL could guide app devel-
oper’s security development decisions via real-time feedback,
informative warnings and suggestions. At its core of emphaSSL,
we use a set of rigorous security rules, which are obtained
through an in-depth SSL/TLS security analysis based on security
requirements engineering techniques. We implement emphaSSL
via the PMD and evaluate it against 75 open-source Android
applications. Our results show that emphaSSL is effective at
detecting security violations in HTTPS calls with a very low
false positive rate, around 2%. Furthermore, we identified 164
substantial SSL mistakes in these testing apps, 40% of which
are potentially vulnerable to man-in-the-middle attacks. In each
of these instances, the vulnerabilities could be quickly resolved
with the assistance of our highlighting messages in emphaSSL.
Upon notifying developers of our findings in their applications,
we received positive responses and interest in this approach.

I. INTRODUCTION

A. Motivation

Though Android platform is the most popular platform in
the world, the authorship of Android applications (apps) has
been notably insecure [1]–[3]. In the appified world, Android
apps faced many challenges in the safe implementation of
security. Beyond malware and theft, the use of smartphones
on insecure wireless access points remains as a dangerous
reality in day-to-day data consumption. Previous studies have
shown that holes exist in a wide range of popular Android
applications and libraries, including banking applications, e-
commerce libraries used to conduct transactions through third-
party servers, and social media clients that are shown to be
vulnerable [4]–[6]. These holes leave the end-user without the
benefits of the HTTPS (Hypertext Transfer Protocol Secure)
protocol. However, this basic encrypted security is a reason-
able expectation of all non-trivial applications.

The causes for the disparity between the theoretical and
realized security of SSL implementations can be attributed
to a number of factors including library vulnerabilities,
complications and shortcomings of the TLS protocol itself,
server misconfiguration, and end users [5]. However, the
most pervasive reason why these implementations are not
effective is due to application developer’s mistakes when

making network calls to Internet web servers. Mistakes in
code can be caused by leftover debug code or testing-time
workarounds such as custom trust managers and skipping
hostname verification [4]. Overrides of security errors are
also pervasive. Developers have been observed to use code
snippets in order to clear error messages without resolving
the certificate trust issue [4], [7]. Furthermore, in the case
of developers using ‘http://’ when the ‘https://’ version of a
web service is readily available, the mistake may be caused
by developer ignorance, apathy, or frustration with HTTPS-
style transport-layer security. Concerns for application speed,
functionality, and interoperability with legacy systems may
also play a role in the decision to leave applications without the
highest layer of protection [5]. Rather than literally repetitive
and ineffective emphasis [7], could our focus shift towards
emphasis as a mechanism? A more informative methodology
to aid in adding security considerations in Android apps is
desired. Therefore, it is imperative for developers of HTTPS-
ready apps to seek a solution that serves as an assistant in
the proper creation of SSL connections with more emphasis.
Approaching the problem from this developer-centric position
presented challenging issues in the mechanism for determining
the most pressing security issues, properly identifying these
issues before compile-time, and determining the most prudent
phrasing of error messages.

B. Contribution

In this paper, we present emphaSSL, a simple, practical
and readily-deployable way to solve this problem via real-
time feedback, informative warnings and suggestions. Through
real-time highlighting of unsafe methods, the developer could
correct their errors once they understand the implications. Our
emphaSSL directly enables developers to fix the mistakes of
HTTPS development before compiling their app code. At its
core of emphaSSL, a set of rules are utilized, which are
derived from the in-depth analysis of security requirements
engineering techniques on Android apps. This includes a
process of determining user and system assets, application
functions, threats, and limitations to a secure environment.
This foundation gives our ruleset validity and focus. We design
and implement emphaSSL via the PMD source-code parsing
project [8], which would serve to point out insecure source
code to developers as they write their applications. We evaluate
this design through a combination of automated testing and
manual review of the test results. Our ruleset’s results were
verified for accuracy through an investigation of the tool’s



output. We provide context to the ruleset by reading over
the offending lines of code by hand and comparing them
to security best practices. The evaluation results show our
emphaSSL is effective at determining user errors with a very
low false positive rate (around 2%) before an application is
compiled, which ultimately hardens the networking security
for Android apps in the wild.

Specifically, we make the following contributions:

• We propose a simple, practical, and readily-deloyable
approach to combating developer misuse of Internet-
based security connections based on source-code parsing
and coding-time feedback. Our approach works with
developers to fix issues immediately. By simply installing
emphaSSL, developers can begin catching their mis-
takes. This design is also useful in applications beyond
the scope of HTTPS-specific security and can be extended
to include future guidelines of next-generation protocols
and concerns. Furthermore, this work can be applied to
numerous environments.

• We provide practical rules to assist Android app devel-
opers in the proper creation of SSL connections. These
rules are informed by our design for text-parsing violation
checking and were produced through a process rooted
in security requirements engineering. The objective of
emphaSSL is to verify that major HTTPS overrides are
not in place within the application source code. This
ruleset includes checks for the use of HTTPS, integrity
of hostname verification, security of trust management,
and transparency of error reporting.

• We perform a well-proportioned study of 75 open source
Android applications that use the INTERNET permission
totaling over 100,000 lines of code, which demonstrates
the effectiveness of our ruleset with a very low false
positive rate, around 2%. Furthermore, we find that 30
of these applications can be considered vulnerable and
nine that have serious HTTPS overriding capabilities
that leave these applications open to man-in-the-middle
attacks. We present a discussion of developer response to
our follow-up notifications on their project issues. We find
several cases of application owners taking our suggestions
seriously and amending their code to properly conform
to HTTPS standards.

II. OVERVIEW OF emphaSSL

Our emphaSSL, as shown in Figure 1, is an early-warning
approach to Android application security. In our approach, we
attempt to educate the developer in a noninvasive way on the
basics of HTTPS on Android, and solve for security errors
in real-time. Instead of relying on external organizations or
install-time static-code scanners, we present the belief that
developer will fix their mistakes in the implementation of
HTTPS if given the proper understanding of the protocol and
its implications. To achieve this goal, we present the developer
with helpful messages in their development environment when
an unsafe method or string literal has been detected. These

Fig. 1. The architecture of our emphaSSL

messages briefly explain the flaw which was discovered and
then present a link to further reading and remediation.

At its core of emphaSSL, a ruleset is built on top of
the open-source PMD source-code parsing project [8]. PMD
allows for custom rules to be applied to the project as seen in
Figure 1. The ruleset for emphaSSL is derived from a process
of security requirements engineering and common mistakes
discovered by the Android security community. These mis-
takes are generally exhibited by unsafe methods or literals
which compromise the identity validation system of HTTPS.
The ruleset of emphaSSL is then compared against source
code by PMD either printing out a list of errors into the
terminal or placing a marker next to the line of code which
has violated a rule in the IDE.

Due to the enormous combinations of Java source code
methods, variables, and logic, the ruleset we present with
emphaSSL is not all-inclusive. Thus, emphaSSL is designed
as an extensible, but still substantial implementation of our
design for authorship-time code validation can be effective in
networking security environments. In this paper, we test the
effectiveness of emphaSSL through automation and manual
analysis of a substantial number of applications. This ruleset
is effective to guide developers to write safer HTTPS calls by
running this ruleset against the application. We will explain
our approach, design, implementation and evaluation in the
following sections with more depth.



III. DESIGN OF SSL/TLS SECURITY RULES

In this section, we will discuss how our sample rules were
chosen to be included in the final ruleset by explaining the way
we have set benchmarks for the Android/server PKI system
in a security context. Following this section, we will discuss
the ruleset we have developed and how they correspond to the
design layed out in this section. The goal of the emphaSSL is
to provide a utility to code authors which analyzes source code
in real-time and provides feedback on the security of HTTPS
implementation. Our hypothesis for this project was to show
that SSL/TLS security errors can be effectively presented and
mitigated in a developer’s programming environment.

Before deciding on the practical system to use, we first
define rules which should not be violated in order to comply
with TLS standards. Our design methodology is instructed by
the field of security requirements engineering [9]–[13]. We
identify the assets, functional requirements, security goals and
threats, security requirements, and finally the limitations of
these requirements. This emphaSSL ruleset design is built on
both standard Android HTTP use and the existing HTTPS
security system. The goal in either case is to move each
application toward a more protected state of either system and,
if possible, an HTTPS Everywhere paradigm [14].
User Assets: In the scope of this paper, the ruleset is devised to
protect assets which are transmitted over the Internet from mo-
bile devices. Thus, these assets include the encrypted (HTTPS)
and plaintext (HTTP) messages which are transmitted from
Android devices. This message may contain personally iden-
tifiable information, login credentials, or innocuous data. The
user’s device and website logins can also be considered assets
as they may become vulnerable if a successful man-in-the-
middle attack is carried out.
Functional Requirements: The functional requirements
which are needed in this mobile data model in order to give
the assets value are the ability to connect to a server as well
as send and receive messages from the server. Our design
must make sure not to compromise the basic operations of an
application for sake of extra security. This can functionally
take place with either HTTP or HTTPS. Overall, a secure
HTTPS connection should be carried out in order to maximize
both functionality and security [5], [7].
Security Goals and Threats: The primary goals of transport-
layer security are confidentiality and integrity. Note that, this
work is aimed at moving Internet communications toward
HTTPS Everywhere and thus any instance where a message
can be encrypted and retain a trusted identity, it should be
encrypted and encrypted correctly. Man-in-the-middle attacks
can sniff packets, manipulate data, and generally deny service
to the user. These threats can fall under a breach of privacy,
loss of data, and denial of service, etc. Our ruleset should be
able to guide developers to defend against interception, surveil-
lance, and censorship. When correctly implemented, HTTPS
prevents man-in-the-middle threats from posing a threat to
user data, but this ruleset is designed with an understanding
that HTTPS is often insecurely used or simply unused. Our

design calls for technical information and its corresponding
implications to be presented directly to the developer.
Security Requirements: We must determine the components
within HTTPS and specifically Java’s handling of HTTPS
which must be kept together. We identify four sections of
HTTPS use which must be required: 1) use of HTTPS, 2)
hostname verification 3) valid error checking and 4) proper
trust management. These categories then include specific
methods and code practices which have been identified as
common mistakes made by developers [4]. The use of the
AllowAllHostnameVerifier would be an example of a violation of the
second requirement, hostname verification.
Limitations: Given the innumerable ways to violate the four
aforementioned aspects of HTTPS, the sample ruleset which
we present is practical, thorough and extensive, but not a
completely comprehensive checklist. Furthermore, analyzing
source code does not have context and may yield false pos-
itives when certain code is correctly implemented, but using
a blacklisted method. This requires trust in the developer to
appropriately interpret the error message and respond in a way
that furthers the application’s security.

IV. DEVELOPMENT OF THE EMPHASSL RULESET

Our sample rules follow the security requirements (SR)
which were laid out in the previous section. Our emphaSSL
contains ten rules listed in Table I. This table lists the rule
number, the name we gave to the rule which summarizes the
error caught, and a short message that appears to the developer
if the rule has been triggered on their code. Here, source code
of the app will be analyzed during the coding time. Note that,
the error messages have been truncated and links to online
material have been replaced with ‘HYPERLINK’. These ten
blacklisted method calls provide a selection of mistakes made
in applications using HTTPS or HTTP. The choice of these
rules come from our focus on security requirements engineer-
ing as well as our understanding of common Android HTTPS
vulnerabilities [4], [5] and the Android Developer Training
[15]. The rules are written to be as specific and contextually
appropriate as possible. Furthermore, our design can be seen
as highlighting the ‘blindspots’ [16]. By choosing commonly
misused lines of code, we are primarily identifying mistakes
made by developers who are unaware of the issues in security
they are causing.

In the following section, we will describe why we chose
these rules and why we chose PMD as the host of this
plugin extension. In the next section, we will describe the
experimental process itself.
SR. 1 Use of HTTPS: In order to detect whether or not
developers were utilizing HTTPS, we created two rules which
serve the similar purpose of identifying whether HTTP URLs
are being used in an application. In checking literals, some
URLs may resolve when an ‘s’ is added to the URL, in others
it may not. For this security requirement, we developed a rule
for both situations. These rules could later be weighted based
on urgency. A literal that can be changed immediately is more
pressing than a literal that cannot change without breaking



Rule # Rule Name Truncated Alert Message

1, 8 AllowAllHostnames AllowAllHostnameVerifier used. Any certificate received may in fact be from an attacker
in between the user and server leaving the user vulnerable to data loss and surveillance.
Read more: HYPERLINK

2 CustomHostnameVerifier Custom HostnameVerifier used. Custom HostnameVerifiers may overlook certain pro-
tections which are applied by default to HTTPS libraries. Read more: HYPERLINK

3 CustomSSLSocketFactory Custom SSLSocketFactory used. This opens the user to man-in-the-middle-attacks
which compromise data and privacy. Use the library defaults if at all possible. Read
more: HYPERLINK

4 CustomTrustManager Custom trust manager used. This accepts certificates which are invalid and thus giving
man-in-the-middle machines the ability to intercept traffic between the user and server.
Read more: HYPERLINK

5 MoveToHTTPS While this literal does not resolve to a website when entered as a URL, this connection
can be made safer by moving servers and the applications which connect to them to an
HTTPS Everywhere paradigm.

6 HTTPSCouldBeUsed This literal resolves to an address online when parsed as a URL. By changing the ’http’
to ’https’, the message will be encrypted as it travels to and from the server.

7 SSLSetVerifyResult Unsafe method SSL set verify result used. This method overrides certificate checking
in HTTPS, leaving the message vulnerable to interception and sniffing attacks.

9 EmptyCatchBlock(SSL) Caught SSL or Certificate exception not reported. An HTTPS-related error was
discovered and no actions were taken. This suppresses the error which should be sent
to the user in some form notifying them of the unsafe certificate.

10 UnsafeHostnameVerification SSLSocket created without proper hostname verification. In order for an SSLSocket to
be secure, it needs manual hostname verification connected to it. This prevents sniffing
and interception of packets by attackers. Read more: HYPERLINK

TABLE I
RULESET USED. NOTE THAT RULE 1 AND 8 ARE GROUPED TOGETHER SINCE THEY ARE TWO DIFFERENT WAYS OF IMPLEMENTING THE SAME

ALLOWALLHOSTNAME OVERRIDE

functionality until a server is properly configured for HTTPS.
Rule 5, MoveToHTTPS, would be triggered if the application
is using an HTTP URL, but the URL does not resolve to
an appropriate address. Since increasing security in this case
would directly break functionality, this rule would not result
in a heavy warning, but rather a suggestion for a shift to
secure servers if this is possible. Rule 6, HTTPSCouldBeUsed
functions in a similar way, but would be violated if the HTTP
URL, when changed to HTTPS, resolved to a valid webpage.
This would prompt the developer with a more firm warning.
In either case, the developer is made aware of the status of
their application’s Internet security and is shown steps on how
to harden the connection.
SR. 2 Hostname Verification: The issues which comprise
hostname verification overrides are the most common type of
HTTPS misuse due to the ease of implementation, but they are
also some of the most dangerous overrides in Android security.
Several suspect methods and practices have been identified in
regards to the overriding of hostname verification, thus three
fifths of the rules we have determined fall under this category.
Rules 1 and 8 would be violated if a project implements a form
of allowing all hostnames. This is achieved programmatically
by way of a method or boolean that always returns true placed
into the hostname verifier or SSLSocketFactory . One specific way
to implement these ALLOW ALL verifiers, is to declare a
custom hostname verifier with the ALLOW ALL item as a
parameter. Customization of hostname verification is danger-
ous, potentially allowing for the ALLOW ALL methods and
thus we have listed CustomHostnameVerifier in our rules. If
the OpenSSL [17] library is used, the ssl set verify result would

be used to a similar dangerous result as Rule 1 and 2.
Rule 3, CustomSSLSocketFactory, would catch a declared
SSLSocketFactory . Using a manually crafted SSLSocketFactory allows
for the customization of the SSL connection and can be used
to insert a custom hostname verifier or a foreign trust store.
Finally, the direct creation of the SSLSocket does not include
hostname verification by default and thus when hostname
verification is not provided, Rule 10 would be thrown.
SR. 3 Valid Error Checking: The suppression of errors makes
the difference between applications that notify the user if they
want to continue after detecting certificate mismatches and
applications which override certificate verification altogether.
The former results in the most secure application a developer
can present without compromising functionality while the
latter sacrifices all protections offered through HTTPS. Rule
9 EmptyCatchBlock(SSL) most specifically applies to this
category. This rule would be triggered when either the catch in
a try-catch statement is left blank or the ‘throws’ component
of a method declaration is left empty. This rule checks for
specific SSL/TLS-related errors in order to remain relevant to
Android SSL/TLS security, but the practice of overriding any
error should never be used in a published application. Errors
should always be presented to the user.
SR. 4 Proper Trust Management: While it is impossible
by Java code analysis to detect a self-signed certificate added
to the package, an altered TrustManager can be detected. This is
the purpose of Rule 4, CustomTrustManager, which would be
encountered if this component is declared in code. Generally
the addition of extra certificates has been seen as insecure
even when being included by manufacturers and telecommu-



nication companies [18]. Thus, developers should be warned
that adding additional certificates to the already overflowing
Android root store is not a safe method to deliver transport
layer security to an application’s communications.

V. EVALUATION

For this implementation, PMD was chosen due to its ex-
tensible interface and basis in source code parsing [8]. Error
messages will inform developers more than fix their mistakes.
This remains in line with our design of a system that points
out developer blindspots rather than correcting them silently
or prints out a cryptic stacktrace. We chose the most recent
build at the time of our design–PMD build 5.2.1. [19], [20].
Our final design demos can be seen in Figure 2 and Figure 3.

In order to determine the effectiveness of emphaSSL,
we must determine whether the detected violations via our
emphaSSL are valid detections of HTTPS development errors
in the app’s source code regardless of who is developing it.
Therefore, we plan to build an automated process to test our
emphaSSL first and manually review the detected violations
later. First of all, in our testing of emphaSSL on a sizeable and
readily-accessible sample, a number of popular open source
applications’ source code files were tested. Only applications
that listed the INTERNET permission and had significant use of
Internet connection (HTTP/HTTPS) were selected. In detail,
75 open source Android application projects consisting of
9,346 Java files totaling over 100,000 lines of code were down-
loaded onto the local testing machine, a 64-bit Debian Wheezy
desktop with a 3.8 GHZ Intel Core i5-3570K CPU and 4GB
of RAM. These popular applications were listed on either in
the F-Droid repository [21] or on Github and then cloned for
our experiment. A bash script was written which ran PMD
against these apps, outputting the results to log files which
can be analyzed later. The logs contain truncated messages
to preserve readability. These log files were analyzed and a
manual investigation into the offending files was conducted
following the experiment to determine whether the detected
violations were valid detections of security errors. The results
of these tests will be discussed in the next section.

A. Results and Discussion

Analysis of the logs from our experiment provides evidence
to the ability of our emphaSSL to detect HTTPS misuse and
appropriately notify developers as they work. Furthermore,
our experiment finds 30 applications (40%) which can be
considered vulnerable, 9 of which (12% of all applications
in the sample) have serious HTTPS overriding capabilities.
Table II and III list the results from the experiment on 75
applications. Table II displays the number of violations of
each rule overall. In this table, Rule 1 and 8 are seperate
to differentiate AllowAllHostnameVerifier()(Rule 1) and SSLSocketFac-

tory.ALLOW ALL HOSTNAME VERIFIER(Rule 8).
SR. 1 Use of HTTPS Results: As evidenced by our results,
the most common mistake made by developers of this sample
is the use of HTTP over HTTPS. Rule 5 violations, which
have detected HTTP URLs that do not resolve to valid server

addresses, were found in 64 of the 75 applications (85%).
These are not as significant in the scope of error catching
due to the high likelihood of false positives (such as in the
case of string concatenation) as Rule 6. Moreover, 37 of these
applications (57% of previous violation pool, 49% of the total
application sample) contain Rule 5 violations, but no Rule 6
violations. In 27 of the 75 works (36%), a Rule 6 violation was
found, denoting an instance where a secured HTTPS session
could be made between the application and the server if an
‘s’ is added to the URL. In general, Rule 6 violations are
considered vulnerable unless otherwise determined during the
follow-up analysis.
SR. 2 Hostname Verification Results: In reviewing our
results, there were 31 hostname verification violations overall.
Nine projects (12%) had hostname verification overrides in
some capacity. The most common override found was Rule
10, the creation of an SSLSocket instance without hostname
verification. When combined, Rule 1 and 8, which involve
allowing all hostnames, are also present in these projects. All
nine projects, which violate hostname verification, contain one
of these two rules. Every instance that custom hostname code
was written, the intention of which was to ignore hostname
checks.
SR. 3 Valid Error Checking Results: There were twelve
instances of invalid error checking within our sample, however
only six projects (8%) have the Rule 9 violation. Each instance
occurs twice in the project, a trend which we will later discuss.
All projects with this violation are considered vulnerable due
to the aforementioned failure to disclose potential security
risks to the end user.
SR. 4 Proper Trust Management Results: The security
requirement with the fewest violations was trust management.
Rule 4, which checks for custom trust managers found only six
instances (8%) within the sample. Improper trust management
is considered a critical vulnerability due to the dangerous
attack surface that a bulky root store provides. Custom trust
managers can ignore certificate checks or allow self-signed
certificates to authenticate servers or middle-man devices.

Following the automated test of these 75 applications, a
manual analysis of the project files was conducted. We used
the result logs from our automation script to find errors
and determine their severity within the offending codebase.
In several instances, such as in the case of the WordPress
application, proper measures were taken to handle exceptions,
but certain blacklisted methods were used in order to allow
functionality. The discussion of our results is informed by this
manual analysis. In this section we will explore our findings
in comparing the automated and manual evaluations.

In general, there were nine projects which have alarming
HTTPS overrides. Six of these projects have comparable
patterns of violations. Each of the six applications violates
Rule 9, either Rule 1 or 8, and Rule 2. Thus, both error
checking and hostname verification are turned off, leaving
the applications vulnerable to prevailing man-in-the-middle
attacks. The instance of six projects using a similar set of
blacklisted methods may be the result of a solution being



Fig. 2. Displaying PMD error markers and violations outline to the left of violations

Fig. 3. Displaying a rule message when hovering over a violation tag

extracted from StackOverflow despite the warnings against
using the code in production [22].

In a few projects where no violations were noticed, the
code which processed the HTTPS was too low-level for

the ruleset to detect. Despite the necessity of applications
to use generally well-reviewed and trusted implementations
of the SSL/TLS protocol, these applications, such as ICS
OpenConnect, do not use a library which has methods checked



TABLE II
VIOLATIONS BY RULE

Rule Name (Rule Number) Number of Violations
AllowAllHostnames (1) 4
CustomHostnameVerifier (2) 6
CustomSSLSocketFactory (3) 3
CustomTrustManager (4) 6
MoveToHTTPS (5) 751
HTTPSCouldBeUsed (6) 115
SSLSetVerifyResult (7) 0
AllowAllHostnames (8) 7
EmptyCatchBlock (9) 6
UnsafeHostnameVerification (10) 11

TABLE III
VIOLATIONS BY PROJECT

Rule Name (Rule Number) Number of Violating Projects
AllowAllHostnames (1, 8) 9
CustomHostnameVerifier (2) 6
CustomSSLSocketFactory (3) 3
CustomTrustManager (4) 6
MoveToHTTPS (5) 37
HTTPSCouldBeUsed (6) 27
SSLSetVerifyResult (7) 0
EmptyCatchBlock (9) 10
UnsafeHostnameVerification (10) 4

by these sample rules. While several of the applications have
unique implementations of HTTPS, a few applications have
outlier qualities that were identified in the manual analysis.
The WordPress application contains a special socket factory
that is used when the certificate is not accepted, allowing the
user to continue if they click ‘OK’. This is actually the correct
way to deal with a failed certificate, but was still picked up by
our sample ruleset which did not have the context to detect the
false positive. The Subsonic Android app accepts self-signed
certificates. This is dangerous, but most likely comes from
a functional perspective when dealing with home streaming
servers. In this case, the security requirements cannot be met
while maintaining functionality.

In these instances, the shortsighted nature of a source-code
parsing plugin can be seen. Despite this, the warnings brought
up by our plugin have identified security violations on a ma-
jority of the projects tested without hindering the functionality
of the applications. With our emphaSSL, developers are able
to better identify and prioritize their mistakes, contemplate the
implications, and correct them as they see fit.

Following our analysis of the results, we posted code issues
on 16 of the 30 ‘vulnerable’ projects which we had determined
needed to implement HTTPS. Three of the projects which we
issued bug reports on already had notifications of SSL/TLS
issues or insecurities. One month later, positive responses to
the issue postings were received, which showed actions would
be taken in the immediate future to resolve the vulnerability

Our results show that our deisgn is an effective way to spot
mistakes in application source-code in a non-invasive fashion.
While these the ruleset may lack a contextual depth, they
narrow down thousands of lines of source code into a few
error markers which a developer can then utilize in hardening
Internet security in Android apps.

VI. CONCLUSION

Our emphaSSL has presented a novel method of identify-
ing SSL/TLS vulnerabilities in code which is being written.
We also have presented a design for developing rules to
prevent HTTPS misuse on the Android platform and a set
of ten sample rules. Finally, we have discussed the results
of an experiment on seventy-five open source applications
showing significant vulnerabilities in 30 (40%) projects. This
paper puts forward a more developer-centric integration of
security warnings which fits into the paradigm of solving for
developer ‘blindspots’. Our methodology can positively impact
the security of application development before a product
reaches compile time. We bridge a gap in the developer’s
understanding of HTTPS that has been shown in innumerable
studies while maintaining the functionality of the program,
which ultimately hardens the networking security in Android
apps.

REFERENCES

[1] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An empirical
study of cryptographic misuse in android applications,” in ACM CCS,
2013.

[2] B. Berger, M. Bunke, and K. Sohr, “An android security case study with
bauhaus,” in IEEE WCRE, 2011.

[3] W. Enck, D. Octeau, P. McDaniel, and S.Chaudhuri, “A study of android
application security,” in USENIX Security, 2011.

[4] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, and
M. Smith, “Why eve and mallory love android: An analysis of android
ssl (in)security,” in ACM CCS, 2012.

[5] S. Fahl, M. Harbach, H. Perl, M. Koetter, and M. Smith, “Rethinking
ssl development in an appified world,” in ACM CCS, 2013.

[6] R. Anubhai, D. Boneh, M. Georgiev, S. Iyengar, S. Jana, and
V. Shmatikov, “The most dangerous code in the world: Validating ssl
certificates in non-browser software,” in ACM CCS, 2012.

[7] V. Tendulkar and W. Enck, “An application package configuration
approach to mitigating android ssl vulnerabilities,” in MOST, 2014.

[8] PMD, http://pmd.sourceforge.net/.
[9] P. Chen, M. Dean, D. Ojoko-Adams, H. Osman, L. Lopez, and N. Xie,

“System quality requirements engineering (square): Case study on asset
management system,” Technical Report, Carnegie Mellon University,
2004.

[10] S. Gordon, T. Stehney, N. Wattas, and E. Yu, “System quality require-
ments engineering (square): Case study on asset management system,
phase ii,” Technical Report, Carnegie Mellon University, 2005.

[11] C. Haley, J. Moffett, R. Laney, and B. Nuseibeh, “A framework for
security requirements engineering,” in ACM SESS, 2006.

[12] D. Hatebur, M. Heisel, and H. Schmidt, “A pattern system for security
requirements engineering,” in IEEE ARES, 2007.

[13] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile phone
application certification,” in ACM CCS, 2009.

[14] EFF, “HTTPS Everywhere,” 2015, https://www.eff.org/https-
everywhere.

[15] Security with HTTPS and SSL, https://developer.android.com/training/
articles/security-ssl.html.

[16] J. Cappos, Y. Zhuang, D. Oliveira, M. Rosenthal, and K. Yeh, “Vul-
nerabilities as blind spots in developers heuristic-based decision-making
processes,” in ACM NSPW, 2014.

[17] “OpenSSL,” http://www.openssl.org/.
[18] N. Vallina-Rodriguez, J. Amann, C. Kreibich, N. Weaver, and V. Paxson,

“A tangled mess: The android root certificate stores,” in ACM CoNEXT,
2014.

[19] PMD 5.2.1, http://pmd.sourceforge.net/pmd-5.2.1/.
[20] PMD-Eclipse, http://sourceforge.net/projects/pmd/files/pmd-eclipse/.
[21] F-Droid, https://f-droid.org/.
[22] Stack Overflow: SSL–Untrusted Certificate Error, http://stackoverflow.

com/questions/2642777/trusting-all-certificates-using-httpclient-over-
https.


